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 Abstract - The existing methods developed in URTURIP 
Technique (Ultrasound Reflection-mode Tomography Using 
Radial Image Processing) can be considered as a part of a 
reconstruction family called Maximized Weighted Averages 
Technique, and it is the object of this paper. It is shown that a 
reconstruction can be viewed as a filter and that the three 
commonly used methods can be rewritten with the same 
formulation. Moreover, interesting new methods can be 
developed by using other adapted filters.  
 Keywords - URTURIP Technique, Ultrasound Tomography, 
2D Reconstruction. 
 

I. INTRODUCTION 
 

As a part of our project concerned with the development 
of an ultrasound scanner dedicated to limb study, the 
URTURIP Technique (Ultrasound Reflection-mode 
Tomography Using Radial Image Processing) has been 
developed [1]. It consists in using classical B-scan images 
instead of projections [2-5] and gives qualitative images 
instead of quantitative images. The final goal of this project is 
the 2D and 3D reconstruction of anatomical structures at limb 
level by using echographic image processing. The developed 
process consists of several successive steps like : multiple 
reflection removing [6], 2D reconstruction [1], segmentation 
[7], contour association [8], contour interpolation [9], 3D 
reconstruction and visualization [10]. It has been validated by 
in vitro experiments on anatomical pieces of limbs of new-
borns using a simple acquisition system prototype [10]. Now, 
in vivo experiments are carried out thanks to a calibration 
technique [11] which allows a good positioning of the probe 
and an accurate determination of the rotation centre.  

Most of the existing methods developed in URTURIP 
Technique can be considered as a part of a reconstruction 
family called Maximized Weighted Averages Technique, and 
it is the object of this paper. It is shown that a reconstruction 
can be viewed as a filter and that the three commonly used 
methods can be rewritten with the same formulation. 
Moreover, several new interesting methods can be developed 
by using other filters. It allows adapting the reconstruction to 
an application and choosing a good contrast between the 
different structures to be observed. 

II. THE URTURIP TECHNIQUE 
 

A. Principle of reconstruction 
 

The Ultrasound Reflection-mode Tomography Using 
Radial Image Processing (URTURIP Technique) principle is 
to utilize radial B-scan images instead of projections as most 
other methods do [2-5]. In comparison, fewer radial 
directions are needed, it is less time-consuming, but 
qualitative images instead of quantitative ones are computed. 

Let Li
* i=1,..,N be N radial images obtained from N 

angulary equidistant directions around the rotation center 
where Li

*(k, l) denotes the luminance of the (k, l)-pixel on 
the Li

* image.  
An adjustment step consists in turning each Li

* image 
around the rotation center with its own acquisition angle, to 
construct N adjusted images Li in such a way that a pixel (x, 
y) on each Li image corresponds to the same real point of the 
cross-section. 

Then, a method based on the URTURIP Technique 
reconstructs an image L by a combination of the N adjusted 
images Li , i.e. L(x, y) = f(Li(x,y)) , i=1..N, where f denotes 
the reconstruction method.  

 
B. The commonly used methods 
 

The three commonly used methods are the method of 
maxima, the method of averages and the method of 
maximized averages [1]. They are defined as follows. 

 

The method of maxima is given by : 

∀( , )x y  L(x, y) = max
i

L x yi ( , )  i N= 1..  

 

The method of averages is given by : 

∀( , )x y  L x y
N

x y( , ) ( , )= �
1

Li
i=1

N

 

 

The maximized averages method combines the respective 
advantages of previous two basic method in order to obtain a 
good image quality even with few radial images. Its formula 
is as follows: 

∀( , )x y  L(x, y) = max
i

L x yi
' ( , )  i N= ≥1 5.. ,  N  
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where E(z) denotes the integer part of z. 
 

III. THE MAXIMIZED WEIGHTED AVERAGES 
 

A. Formulation 
 

The three previous method can be described by a same 
formulation defined as follows : 

 

∀ ∈   L( , )x y  L x y Max x y
i

i( , ) ( , )'=  L  i N= 1..  
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C is a filter defining each method. Moreover, C being a 
symmetric filter, its restriction C* on [0, N/2] can be 
considered and the formulation becomes : 
 

∀ ∈   L( , )x y  L x y Max x y
i

i( , ) ( , )'=  L  i N= 1..  
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B. Rewritten of the existing methods 
 

It clearly appears that the three commonly used methods 
correspond to three common filters (uniform, impulsive and 
square window). They can be rewritten with the same 
formulation and the corresponding filter C or C* which 
defines the method used. 

 
The method of averages (fig. 1) is defined by :  

 C k N N( ) / , .. , /= ∀ = − +1 2 1 2      k  or 

 C k N* ( ) , .. , /= ∀ =1 0 2      k  
 

The method of maxima (fig. 2) is defined by :  

 [ ] { }C k( ) =
∈

�
�
�

1

0

      if    k = 0

     k - N / 2 +1, N / 2 - 0
 or  

 

 C k* ( ) =
≤ ≤

�
�
�

1

0

      if    k = 0

      if   1 k N / 2
 

 
The method of maximized averages (fig. 3) is defined by : 

 [ ] { }C k( ) =
∈

�
�
�

1

0

      if    - m < k < +m

     k - N / 2 +1, N / 2 - 0
 or  

 

 C k* ( ) =
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1
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Fig. 1 : C and C* for the method of averages 
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Fig. 2 : C and C* for the method of maxima 
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Fig. 3 : C and C* for the method of maximized averages 

 
C. New methods 
 

Of course, in this family of Maximized Weighted Averages 
Methods, other methods can be developed. In the context of a 
comparative study, different methods have been tested using 
different filters [12] like Haming, Hanning, median, ... 

 
The Maximized Weighted Averages Methods using an 

exponential filter (fig. 4) or a gaussian filter (fig. 5) give quite 
interesting and good results and are currently used in our 
project. They are defined by : 

[ ]C k e k( ) = ∈−σ   for  k - N / 2 + 1, N / 2  or 

[ ]C k e k* ( ) = ∈−σ   for  k 0, N / 2  and 

[ ]C k e k( ) /= ∈− 2 2 2σ   for  k - N / 2 + 1, N / 2  or 

[ ]C k e k* /( ) = ∈− 2 2 2σ   for  k 0, N / 2 , where σ > 0  is an 

interesting coefficient to weight the influence of radial 

images. It can be adapted to different applications and depth 
field configurations. 
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Fig. 4 : C and C* for a exponential filter 
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Fig. 5 : C and C* for a gaussian filter 

 

  
 (a) gaussian filter (b) exponential filter 

Fig. 6 : 2D reconstruction at thigh level 
 

Fig.  6 shows a reconstructed cross-section at thigh level 
with  maximized weighted averages methods respectively 
based on a gaussian filter and an exponential filter. It gives 
good contrast to distinguish the different anatomical 
structures. 
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IV. CONCLUSION 
 

In the context of a project of the development of an 
ultrasound scanner dedicated to limb study, the URTURIP 
Technique has been developed. 

In this paper, Maximized Weighted Averages methods are 
described. Thanks to a unique formulation all the three 
commonly used methods can be rewritten. It is shown that 
they correspond to different classical filters. Moreover, in the 
same category of Maximized Weighted Averages, new 
interesting methods can be developed by using other filters. 
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